Medistok » Медицина » Взаимодействие электромагнитных волн

Электромагнитная волна, падая из вакуума на вещество, вызывает колебания в атомах и молекулах вещества. В случае ультрафиолетовых и видимых лучей за изменением электромагнитного поля световой волны могут следовать только электроны в атомах. Инфракрасные лучи вызывают колебания атомов в молекулах, а так же частиц, находящихся в узлах кристаллических решеток твердых тел. Наиболее сильно действие световой волны проявляется, когда ее частота совпадает с одной из собственных частот колебаний электронов в атомах или близка к ней. Атомы и молекулы, приходя в вынужденные колебания, становятся вторичными излучателями электромагнитных волн.

Опр. 4.1..Э/м волна, возникшая в результате суперпозиции первичной и вторичной волн, распространяющаяся в той же среде (или вакууме), откуда пришла первичная волна, наз. отраженной волной.

Опр. 4.2..Э/м волна, возникшая в результате суперпозиции первичной и вторичной волн, распространяющаяся в той среде, где возникли вторичные волны, наз. преломленной волной.

Колебания частиц под действием электромагнитной волны возбуждаются в основном электрической компонентой поля волны (вектор Е). Макроскопические электрические свойства вещества, определяющие его поведение под действием световой волны, характеризуются относительной диэлектрической проницаемостью ; для всех веществ в области оптических частот электромагнитных волн относительная магнитная проницаемость .

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 8995 — | 7239 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

См. также: Портал:Физика

Электромагни́тные во́лны / электромагни́тное излуче́ние — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля. [1]

Среди электромагнитных полей, порождённых электрическими зарядами и их движением, принято относить к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

Электромагнитное излучение способно распространяться практически во всех средах. В вакууме (пространстве, свободном от вещества и тел, поглощающих или испускающих электромагнитные волны) электромагнитное излучение распространяется без затуханий на сколь угодно большие расстояния, но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом своё поведение).

Содержание

Характеристики электромагнитного излучения [ править | править код ]

Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию.

Длина волны прямо связана с частотой через (групповую) скорость распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света [2] .

Описанием свойств и параметров электромагнитного излучения в целом занимается электродинамика, хотя свойствами излучения отдельных областей спектра занимаются определённые более специализированные разделы физики (отчасти так сложилось исторически, отчасти обусловлено существенной конкретной спецификой, особенно в отношении взаимодействия излучения разных диапазонов с веществом, отчасти также спецификой прикладных задач). К таким более специализированным разделам относятся оптика (и её разделы) и радиофизика. Жёстким электромагнитным излучением коротковолнового конца спектра занимается физика высоких энергий [3] ; в соответствии с современными представлениями (см. Стандартная модель), при высоких энергиях электродинамика перестаёт быть самостоятельной, объединяясь в одной теории со слабыми взаимодействиями, а затем — при ещё более высоких энергиях — как ожидается — со всеми остальными калибровочными полями.

Существуют различающиеся в деталях и степени общности теории, позволяющие смоделировать и исследовать свойства и проявления электромагнитного излучения. Наиболее фундаментальной [4] из завершённых и проверенных теорий такого рода является квантовая электродинамика, из которой путём тех или иных упрощений можно в принципе получить все перечисленные ниже теории, имеющие широкое применение в своих областях. Для описания относительно низкочастотного электромагнитного излучения в макроскопической области используют, как правило, классическую электродинамику, основанную на уравнениях Максвелла, причём существуют упрощения в прикладных применениях. Для оптического излучения (вплоть до рентгеновского диапазона) применяют оптику (в частности, волновую оптику, когда размеры некоторых частей оптической системы близки к длинам волн; квантовую оптику, когда существенны процессы поглощения, излучения и рассеяния фотонов; геометрическую оптику — предельный случай волновой оптики, когда длиной волны излучения можно пренебречь). Гамма-излучение чаще всего является предметом ядерной физики, с других — медицинских и биологических — позиций изучается воздействие электромагнитного излучения в радиологии. Существует также ряд областей — фундаментальных и прикладных — таких, как астрофизика, фотохимия, биология фотосинтеза и зрительного восприятия, ряд областей спектрального анализа, для которых электромагнитное излучение (чаще всего — определенного диапазона) и его взаимодействие с веществом играют ключевую роль. Все эти области граничат и даже пересекаются с описанными выше разделами физики.

Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:

  • наличие трёх взаимно перпендикулярных (в вакууме) векторов: волнового вектора, вектора напряжённости электрического поляE и вектора напряжённости магнитного поляH.
Виды энергии:
Механическая Потенциальная
Кинетическая
‹ ♦ › Внутренняя
Электромагнитная Электрическая
Магнитная
Химическая
Ядерная
G <displaystyle G> Гравитационная
∅ <displaystyle emptyset > Вакуума
Гипотетические:
Тёмная
См.также:Закон сохранения энергии
  • электромагнитные волны — это поперечные волны, в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том числе и через вакуум.

Диапазоны электромагнитного излучения [ править | править код ]

Электромагнитное излучение принято делить по частотным диапазонам (см. таблицу). Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения (в вакууме) постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.

Название диапазона Длины волн, λ Частоты, f Источники
Радиоволны Сверхдлинные более 10 км менее 30 кГц Атмосферные и магнитосферные явления. Радиосвязь.
Длинные 10 км — 1 км 30 кГц — 300 кГц
Средние 1 км — 100 м 300 кГц — 3 МГц
Короткие 100 м — 10 м 3 МГц — 30 МГц
Ультракороткие 10 м — 0,1 мм 30 МГц — 3000 ГГц [5]
Инфракрасное излучение 1 мм — 780 нм 300 ГГц — 429 ТГц Излучение молекул и атомов при тепловых и электрических воздействиях.
Видимое излучение 780—380 нм 429 ТГц — 750 ТГц
Ультрафиолетовое 380нм — 10нм 7,5⋅10 14 Гц — 3⋅10 16 Гц Излучение атомов под воздействием ускоренных электронов.
Рентгеновские 10 нм — 5 пм 3⋅10 16 Гц — 6⋅10 19 Гц Атомные процессы при воздействии ускоренных заряженных частиц.
Гамма менее 5 пм более 6⋅10 19 Гц Ядерные и космические процессы, радиоактивный распад.
Читайте также:  Если удален желчный

Ультракороткие радиоволны принято разделять на метровые, дециметровые, сантиметровые, миллиметровые и децимиллиметровые волны (гипервысокие частоты, ГВЧ, 300—3000 ГГц) — стандартные диапазоны радиоволн по общепринятой классификации [5] . По другой классификации указанные стандартные диапазоны радиоволн, исключая метровые волны, называют микроволнами или волнами сверхвысоких частот (СВЧ) [6] .

Ионизирующее электромагнитное излучение. К этой группе традиционно относят рентгеновское и гамма-излучение, хотя, строго говоря, ионизировать атомы может и ультрафиолетовое излучение, и даже видимый свет. Границы областей рентгеновского и гамма-излучения могут быть определены лишь весьма условно. Для общей ориентировки можно принять, что энергия рентгеновских квантов лежит в пределах 20 эВ — 0,1 МэВ , а энергия гамма-квантов — больше 0,1 МэВ . В узком смысле гамма-излучение испускается ядром, а рентгеновское — атомной электронной оболочкой при выбивании электрона с низколежащих орбит, хотя эта классификация неприменима к жёсткому излучению, генерируемому без участия атомов и ядер (например, синхротронному или тормозному излучению).

Радиоволны [ править | править код ]

Из-за больших значений λ распространение радиоволн можно рассматривать без учёта атомистического строения среды. Исключение составляют только самые короткие радиоволны, примыкающие к инфракрасному участку спектра. В радиодиапазоне слабо сказываются и квантовые свойства излучения, хотя их всё же приходится учитывать, в частности, при описании квантовых генераторов и усилителей сантиметрового и миллиметрового диапазонов, а также молекулярных стандартов частоты и времени, при охлаждении аппаратуры до температур в несколько кельвинов.

Радиоволны возникают при протекании по проводникам переменного тока соответствующей частоты. И наоборот, проходящая в пространстве электромагнитная волна возбуждает в проводнике соответствующий ей переменный ток. Это свойство используется в радиотехнике при конструировании антенн.

Естественным источником волн этого диапазона являются грозы. Считается, что они же являются источником стоячих электромагнитных волн Шумана.

Взаимодействие электромагнитных волн с веществом

§ 185. Дисперсия света

Дисперсией света называется зависимость показателя преломления n вещества от частоты v (длины волны l) света или зависимость фазовой скорости v световых волн (см. § 154) от его частоты v. Диспер­сия света представляется в виде зависи­мости

Следствием дисперсии является разложе­ние в спектр пучка белого света при про­хождении его через призму. Первые экспе­риментальные наблюдения дисперсии света принадлежат И. Ньютону (1672 г.). Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света па­дает на призму с показателем преломле­ния n (рис. 268) под углом a1. После двукратного преломления (на левой и пра­вой гранях призмы) луч оказывается от­клоненным от первоначального направления на угол j.

Из рисунка следует, что j=(a1-b1)+(a2-b2)=a1+a2-A. (185.2)

Предположим, что углы А и a1 малы, тогда углы a2, b1 и b2 будут также малы и вместо синусов этих углов можно вос­пользоваться их значениями. Поэтому a1/b1=n, b2/a2=1/n, а так как b1+b2=А, то

Из выражений (185.3) и (185.2) следу­ет, что

т. е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы.

Из выражения (185.4) вытекает, что угол отклонения лучей призмой зависит от величины n-1, а n — функция длины во­лны, поэтому лучи разных длин волн после прохождения призмы окажутся отклонен­ными на разные углы, т. е. пучок белого света за призмой разлагается в спектр, что и наблюдалось И. Ньютоном. Таким образом, с помощью призмы, так же как и с помощью дифракционной решетки,

разлагая свет в спектр, можно определить его спектральный состав.

Рассмотрим различия в дифракцион­ном и призматическом спектрах.

1. Дифракционная решетка разлагает падающий свет непосредственно по дли­нам волн (см. (180.3)), поэтому по изме­ренным углам (по направлениям соответ­ствующих максимумов) можно вычислить длину волны. Разложение света в спектр в призме происходит по значениям показа­теля преломления, поэтому для определе­ния длины волны света надо знать за­висимость n =f(l) (185.1).

2. Составные цвета в дифракционном и призматическом спектрах располагают­ся различно. Из (180.3) следует, что в дифракционной решетке синус угла от­клонения пропорционален длине волны. Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. Призма же разлагает лучи в спектр по значениям показателя пре­ломления, который для всех прозрачных веществ с увеличением длины волны моно­тонно уменьшается (рис. 269). Следова­тельно, красные лучи, имеющие меньший показатель преломления, чем фиолетовые, отклоняются призмой слабее.

называемая дисперсией вещества, показы­вает, как быстро изменяется показатель преломления с длиной волны. Из рис. 269 следует, что показатель прелом­ления для прозрачных веществ с уменьше­нием длины волны монотонно увеличивается; следовательно, величина dn/dl по модулю также увеличивается с уменьшением l.

Такая дисперсия называется нормаль­ной. Как будет показано ниже, ход кривой n(l) кривой дисперсии — вблизи линий и полос поглощения будет иным: n умень­шается с уменьшением l. Такой ход за­висимости n от l называется аномальной дисперсией.

На явлении нормальной дисперсии ос­новано действие призменных спектрогра­фов. Несмотря на их определенные недо­статки (например, необходимость градуи­ровки, различная дисперсия в разных участках спектра) при определении спек­трального состава света, призменные спектрографы находят широкое примене­ние в спектральном анализе. Это объясня­ется тем, что изготовление хороших призм значительно проще, чем изготовление хо­роших дифракционных решеток. В при­зменных спектрографах также легче полу­чить большую светосилу.

§ 186. Электронная теория дисперсии света

Из макроскопической электромагнитной теории Максвелла следует, что абсолют­ный показатель преломления среды

где e — диэлектрическая проницаемость среды, m — магнитная проницаемость. В оптической области спектра для всех веществ m»1 поэтому

Из формулы (186.1) выявляются не­которые противоречия с опытом: величина n, являясь переменной (см. § 185), остает­ся в то же время равной определенной постоянной Öe. Кроме того, значения n, получаемые из этого выражения, не со­гласуются с опытными значениями. Труд­ности объяснения дисперсии света с точки зрения электромагнитной теории Максвел­ла устраняются электронной теорией Лоренца. В теории Лоренца дисперсия света рассматривается как результат взаимо-

Читайте также:  Выпадение матки у женщин после родов

действия электромагнитных волн с заря­женными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнит­ном поле волны.

Применим электронную теорию дис­персии света для однородного диэлектри­ка, предположив формально, что диспер­сия света является следствием зависимо­сти e от частоты w световых волн. Диэлектрическая проницаемость вещест­ва по определению (см. (88.6) и (88.2)) равна

где c — диэлектрическая восприимчивость среды, e0 — электрическая постоянная, P — мгновенное значение поляризованности. Следовательно,

т. е. зависит от Р. В данном случае основ­ное значение имеет электронная поляриза­ция, т. е. вынужденные колебания элек­тронов под действием электрической со­ставляющей поля волны, так как для ориентационной поляризации молекул частота колебаний в световой волне очень высока (v»1015 Гц).

В первом приближении можно считать, что вынужденные колебания совершают только внешние, наиболее слабо связан­ные с ядром электроны — оптические электроны. Для простоты рассмотрим ко­лебания только одного оптического элек­трона. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р=ех, где е — заряд электрона, х — смещение электрона под действием электрического поля световой волны. Если концентрация атомов в ди­электрике равна по, то мгновенное значе­ние поляризованности

Из (186.2) и (186.3) получим

Следовательно, задача сводится к опреде­лению смещения х электрона под действи­ем внешнего поля Е. Поле световой волны

будем считать функцией частоты w, т. е. изменяющимся по гармоническому закону: E=Ecoswt.

Уравнение вынужденных колебаний электрона (см. § 147) для простейшего случая (без учета силы сопротивления, обусловливающей поглощение энергии па­дающей волны) запишется в виде

где F=eE0 — амплитудное значение си­лы, действующей на электрон со стороны поля волны, w0=Ök/m — собственная частота колебаний электрона, m — масса электрона. Решив уравнение (186.5), най­дем e=n2 в зависимости от констант ато­ма (е, т, w0) и частоты w внешнего поля, т. е. решим задачу дисперсии.

Решение уравнения (186.5) можно за­писать в виде

в чем легко убедиться подстановкой (см. (147.8)). Подставляя (186.6) и (186.7) в (186.4), получим

Если в веществе имеются различные за­ряды ei, совершающие вынужденные коле­бания с различными собственными часто­тами w0i, то

где mi масса i-ro заряда.

Из выражений (186.8) и (186.9) вы­текает, что показатель преломления n за­висит от частоты w внешнего поля, т. е. по­лученные зависимости действительно под­тверждают явление дисперсии света, хотя и при указанных выше допущениях, кото-

рые в дальнейшем надо устранить. Из выражений (186.8) и (186.9) следует, что в области от w=0 до w=w0n2 больше еди­ницы и возрастает с увеличением со (нор­мальная дисперсия); при w=w0 n2= ±¥; в области от w=w0 до w=¥ n2 меньше единицы и возрастает от -¥ до 1 (нормальная дисперсия). График за­висимости и от со представлен на рис. 270. Подобное поведение n вблизи собствен­ной частоты w0 получилось в результате допущения об отсутствии сил сопротив­ления при колебаниях электронов. Если принять в расчет и это обстоятельство, то график функции n (w) вблизи w0 за­дается штриховой линией АВ. Область АВ — область аномальной дисперсии (n убывает при возрастании w), осталь­ные участки зависимости n от w опи­сывают нормальную дисперсию (n воз­растает с возрастанием со).

Советскому физику ­ственскому (1876—1940) принадлежит классическая работа по изучению ано­мальной дисперсии в парах натрия. Он разработал интерференционный метод для очень точного измерения показателя пре­ломления паров и экспериментально по­казал, что формула (186.9) правильно ха­рактеризует зависимость и от со, а также ввел в нее поправку, учитывающую кван­товые свойства света и атомов.

Поглощением (абсорбцией) света называ­ется явление потери энергии световой во­лной, проходящей через вещество, вслед­ствие преобразования энергии волны в другие формы (внутреннюю энергию вещества и в энергию вторичного излучения других направлений и спектрально­го состава). В результате поглощения ин­тенсивность света при прохождении через вещество уменьшается.

Поглощение света в веществе описы­вается законом Бугера:

где I0 и I — интенсивности плоской моно­хроматической световой волны на входе и выходе слоя поглощающего вещества толщиной х, aкоэффициент поглоще­ния, зависящий от длины волны света, химической природы и состояния вещества и не зависящий от интенсивности света. При х=1/a интенсивность света I по сравнению с I0 уменьшается в е раз.

Коэффициент поглощения зависит от длины волны l (или частоты w) и для различных веществ различен. Например, одноатомные газы и пары металлов (т. е. вещества, в которых атомы рас­положены на значительных расстояниях друг от друга и их можно считать изо­лированными) обладают близким к нулю коэффициентом поглощения и лишь для очень узких спектральных областей (при­мерно 10-12—10-11 м) наблюдаются рез­кие максимумы (так называемый линейча­тый спектр поглощения). Эти линии со­ответствуют частотам собственных коле­баний электронов в атомах. Спектр поглощения молекул, определяемый коле­баниями атомов в молекулах, характери­зуется полосами поглощения (примерно 10-10— 10-7м).

Коэффициент поглощения для диэлек­триков невелик (примерно 10-3— 10-5см-1), однако у них наблюдается селективное поглощение света в опреде­ленных интервалах длин волн, когда а резко возрастает, и наблюдаются сравни­тельно широкие полосы поглощения, т. е. диэлектрики имеют сплошной спектр поглощения. Это связано с тем, что в ди­электриках нет свободных электронов и поглощение света обусловлено явлением резонанса при вынужденных колебаниях

электронов в атомах и атомов в молекулах диэлектрика.

Коэффициент поглощения для метал­лов имеет большие значения (примерно 103—105 см-1) и поэтому металлы являют­ся непрозрачными для света. В металлах из-за наличия свободных электронов, дви­жущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся вы­делением джоулевой теплоты. Поэтому энергия световой волны быстро уменьша­ется, превращаясь во внутреннюю энер­гию металла. Чем выше проводимость ме­талла, тем сильнее в нем поглощение света.

На рис. 271 представлены типичная зависимость коэффициента поглощения а от длины волны света X и зависимость показателя преломления n от l в области полосы поглощения. Из рисунка следует, что внутри полосы поглощения наблюда­ется аномальная дисперсия (n убывает с уменьшением l). Однако поглощение ве­щества должно быть значительным, чтобы повлиять на ход показателя преломления.

Читайте также:  Очень сильно болит живот и тошнит

Зависимостью коэффициента поглоще­ния от длины волны объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый и синий свет, то из-за сильного поглощения света этих длин волн стекло будет казаться чер­ным. Это явление используется для изго­товления светофильтров, которые в зави­симости от химического состава (стекла с присадками различных солей, пленки из пластмасс, содержащие красители,

растворы красителей и т. д.) пропускают свет только определенных длин волн, по­глощая остальные. Разнообразие преде­лов селективного (избирательного) погло­щения у различных веществ объясняет разнообразие и богатство цветов и красок, наблюдающееся в окружающем мире.

Явление поглощения широко использу­ется в абсорбционном спектральном ана­лизе смеси газов, основанном на измере­ниях спектров частот и интенсивностей линий (полос) поглощения. Структура спектров поглощения определяется соста­вом и строением молекул, поэтому изуче­ние спектров поглощения является одним из основных методов количественного и качественного исследования веществ.

188. Эффект Доплера

Эффект Доплера в акустике (см. § 159) объясняется тем, что частота колебаний, воспринимаемых приемником, определяет­ся скоростями движения источника коле­баний и приемника по отношению к среде, являющейся носителем звуковых волн. Эффект Доплера наблюдается также и для световых волн. Так как особой сре­ды, служащей носителем электромагнит­ных волн, не существует, то частота свето­вых волн, воспринимаемых приемником (наблюдателем), определяется только от­носительной скоростью источника и при­емника (наблюдателя).

Согласно принципу относительности Эйнштейна (см. §35), уравнение световой волны во всех инерциальных системах от­счета одинаково по форме. Используя пре­образования Лоренца (см. §36), можно получить уравнение волны, посылаемой источником, в направлении приемника в другой инерциальной системе отсчета, а следовательно, и связать частоты свето­вых волн, излучаемых источником (v0) и воспринимаемых приемником (v). Теория относительности приводит к следующей форме, описывающей эффект Доплера для электромагнитных волн в вакууме:

где v скорость источника света относи­тельно приемника, с — скорость света в вакууме, b=v/c, q— угол между векто­ром скорости v и направлением наблюде­ния, измеряемый в системе отсчета, свя­занной с наблюдателем.

Из выражения (188.1) следует, что при q=0

Формула (188.2) определяет так называе­мый продольный эффект Доплера, наблю­даемый при движении приемника вдоль линии, соединяющей его с источником. При малых относительных скоростях v (v l0) — так называе­мое красное смещение. При сближении же источника и приемника (при их отрица­тельной относительной скорости) наблю­дается сдвиг в область более коротких волн (v>v0, l c/n (n показатель преломления среды), возникает электро­магнитное излучение, названное впослед­ствии излучением (эффектом) Вавило­ва — Черенкова. Природа данного излуче­ния, обнаруженного для разнообразных веществ, в том числе и для чистых жидко­стей, подробно изучалась ­вым. Он показал, что данное свечение не является люминесценцией (см. §245), как

считалось ранее, и высказал предположе­ние, что оно связано с движением свобод­ных электронов через вещество.

Излучение Вавилова — Черенкова в 1937 г. было теоретически объяснено со­ветскими учеными (1895— 1971) и (р. 1908) (Черен­ков, Тамм и Франк в 1958 г. удостоены Нобелевской премии).

Согласно электромагнитной теории, заряженная частица (например, элек­трон) излучает электромагнитные во­лны лишь при движении с ускорением. Тамм и Франк показали, что это утвер­ждение справедливо только до тех пор, пока скорость заряженной частицы не пре­вышает фазовой скорости с/n электромаг­нитных волн в среде, в которой частица движется. Если частица обладает скоро­стью v>c/n, то, даже двигаясь равномер­но, она будет излучать электромагнитные волны. Таким образом, согласно теории Тамма и Франка, электрон, движущийся в прозрачной среде со скоростью, пре­вышающей фазовую скорость света в дан­ной среде, должен сам излучать свет.

Отличительной особенностью излуче­ния Вавилова — Черенкова является его распространение не по всем направлени­ям, а лишь по направлениям, составляю­щим острый угол q с траекторией частицы,

т. е. вдоль образующих конуса, ось кото­рого совпадает с направлением скорости частицы. Определим угол q

Возникновение излучения Вавилова — Че­ренкова и его направленность истолкова­ны Франком и Таммом на основе пред­ставлений об интерференции света с ис­пользованием принципа Гюйгенса.

На основе излучения Вавилова — Че­ренкова разработаны широко используе­мые экспериментальные методы для ре­гистрации частиц высоких энергий и опре­деления их свойств (направление движе­ния, величина и знак заряда, энергия). Счетчики для регистрации заряженных частиц, в которых используется излучение Вавилова — Черенкова, получили назва­ние черенковских счетчиков. В этих счет­чиках частица регистрируется практиче­ски мгновенно (при движении заряженной частицы в среде со скоростью, превышаю­щей фазовую скорость света в данной среде, возникает световая вспышка, пре­образуемая с помощью фотоэлектронного умножителя (см. § 105) в импульс тока). Это позволило в 1955 г. итальянскому фи­зику Э. Сегре (р. 1905) открыть в черенковском счетчике короткоживущую анти­частицу — антипротон.

• Чем отличается нормальная дисперсия от аномальной?

• По каким признакам можно отличить спектры, полученные с помощью призмы и дифракцион­ной решетки?

• В чем заключаются основные положения и выводы электронной теории дисперсии света?

• Почему металлы сильно поглощают свет?

• В чем основное отличие эффекта Доплера для световых волн и эффекта Доплера в акустике?

• Почему поперечный эффект Доплера чисто релятивистский эффект? Чем он обусловлен?

• Когда возникает излучение Вавилова—Черенкова?

24.1. На грань стеклянной призмы (n=1,5) нормально падает луч света. Определить угол откло­нения луча призмой, если ее преломляющий угол равен 25°. [14°21′]

24.2. При прохождении света в некотором веществе пути х его интенсивность уменьшилась в два раза. Определить, во сколько раз уменьшится интенсивность света при прохождении им пути 4х. [В 16 раз]

24.3. Источник монохроматического света с длиной волны l0=0,6 мкм движется по направлению к наблюдателю со скоростью v=0,15 с (с — скорость света в вакууме). Определить длину волны l, которую зарегистрирует приемник наблюдателя. [516 нм]

24.4. Определить минимальную кинетическую энергию (в мегаэлектрон-вольтах), которой должен обладать электрон, чтобы в среде с показателем преломления 1,5 возникло излучение Вави­лова—Черенкова. [0,17 МэВ]

* П. Бугер (1698—1758) — французский ученый.

Обратите внимание

Эрозия цервикального канала

Содержание1 А есть ли, собственно, эрозия?2 Как устроена шейка матки?3 Как выглядит эрозия (эктопия)?4 Причины ...

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock detector